

# Significant Developments



- Conducted successful Mission Definition Review / Systems Requirements review (MDR/SRR)
- Project has progressed to Phase-B
- Official Project Name is "Europa Clipper"
- Mission launch vehicle assumed SLS
  - No longer required to be compatible with EELV



#### Mission Overview





\*Period: 6/4/22 – 6/24/22 (SLS) \*Period: 6/18/22 – 7/8/22 (EELV)

\* - Dependent on Funding



Cruise: 2.5 Years (SLS) 7.4 Years (EELV)



<u>Jupiter Orbit Insertion</u> 12/24/24 or 5/1/25 (SLS) 11/26/29 (EELV)



Jovian System Operations
Transition to Europa Science: 12
months
Prime Europa Flyby Campaign: 36
months

- Project Category 1
  - LCC > \$1B
- Mission Risk Class A (With tailoring)
- > NPR 7120.5E Compliant (No waivers)
- > S/C design compatible with both SLS and EELV

## Current Clipper Spacecraft Concept







Engineering Model Telecommunications Radio





3 Meter Diameter High Gain Antenna Prototype





Antenna
Pattern
and Gain
Testing At
Langley
Research
Center







Battery
Cell &
Module
Testing



Battery configurations being optimized

210 total Cells (~AA)







Solar Cells in radiation test fixture









Full Size Solar Array Panel Demonstrator (2.2m x 4.1m)

One of Ten!





# Prototype Avionics Testbed (Running Time/Space Partitioned Flight Software)











Thermal Pump Microphonics Test

Thermal Pump Life Test (Irradiated CFC-11)

CFC-11 Lifetime Buy









### Propulsion Component Tests



# Project-Level Lifecycle Schedule

### **Key Project Reviews**



#### **Europa Multi-Flyby Mission (SLS)**

12/25/16

| FY13                           | FY14        |          |                 | FY16        |        | FY17              |     | FY18                         |    | FY19       |     | FY20       |                        | FY21              |             | FY22   |                         |
|--------------------------------|-------------|----------|-----------------|-------------|--------|-------------------|-----|------------------------------|----|------------|-----|------------|------------------------|-------------------|-------------|--------|-------------------------|
| 2013                           | 2013 2014   |          | 2015            | 2016        |        | 2017              |     | 2018                         |    | 2019       |     | 2020       |                        | 2021              |             | 2022   |                         |
| JFMAMJJASC                     | NDJFMAMJJAS | ONDJEMAM | JJASOND         | JFMAMJJASON | ND J F | MAMJJAS           | OND | JFMAMJJASC                   | ND | JFMAMJJASC | DND | JFMAMJJAS  | SOND                   | J F M A M J J A S | OND.        | JFMAMJ | JASOND                  |
| PRE-PHASE A                    |             |          | PHASE A (20 mo) |             |        | PHASE B           |     | (20 mo)                      |    | PHASE      |     | C (26 mo)  |                        | PHASE D (18 mo)   |             |        | PHASE E                 |
| NASA Reviews<br>Project Review |             | MCR      | ▲ KDP-A         |             | - II - | ∆KDP-B<br>SRR/MDR |     | 10/18 △<br><b>8/18 ▼ Pro</b> |    |            | ∇P  | roject CDR | 2/20 ∆<br>∆ SIR<br>/20 | KDP-D             | PSR<br>1/22 | 2/22   | R 4/22<br><b>Launch</b> |
|                                |             |          |                 |             | "      | ES DUD            |     |                              |    |            | ľ   |            |                        |                   |             |        | 6/22                    |







# Mission Concept Update

3/29/2017



## **Viable Lander/Carrier Mission Concept**





- Jupiter orbit insertion Jul 2030
- Earliest landing on Europa: Dec 2031



#### Launch

- SLS Block 1B
- Oct / Dec 2025





#### Deorbit, Decent, Landing

- Guided deorbit burn
- Sky Crane landing system
- 100m accuracy



### **Carrier Relay Orbit**

- 24 hour period
- >10 hours continuous coverage per orbit
- 2 Mrad radiation exposure



- 20+ days
- 5 Samples
- Relay comm through Carrier or Clipper (backup)
- 3-4 Gbit data return
- 45 kWh battery
- 1.5 Mrad radiation exposure





## **Europa Lander Integrated Spacecraft Concept**



Preliminary

Launch Mass (Wet):

CRS: ~14 mT

Deorbit stage: 1.6 mT

DS + Lander: 1.1 mT

Total: ~16.6 mT



# Highlights of Lander Development Concept Progress

- 1. Selected the adaptive stabilizer landing gear
  - ✓ Resilient to >1.0 meter obstacles
- 2. Accommodated SDT Sample Payload
  - √ 5 Instruments at 42.5 kg
- 3. Accommodated redundant electronics
  - ✓ Avionics, Power Distribution and Telecom
- 4. Developed the Lander Planetary Protection Architecture
  - ✓ Added the incinerator and hydrogen peroxide purge
- 5. Added Rasp/Scoop in conjunction with the Saw
  - ✓ Phoenix heritage for reliable sample acquisition





# De-Orbit, Descent & Landing (DDL) Concept





# Initial 6-DoF GN&C Video of De-Orbit, Descent and Landing





# Adaptive Stabilizer Landing Simulation Succeeds in Very Challenging Terrain





# **Concept Lander Surface Configuration**





# A Day in the Life of Concept Lander Relay Operations





# The Phoenix Heritage Rasp and Scoop was Added for Robust Sample Collection





# Trenching Saw Had Successful Proof of Concept Tests in a Dedicated Testbed

#### **Test Progress**

- > 35 different blade types
- 25 different materials including cryogenic Ices
- Two different drive trains with a third one in work





# Surfaces Workspace Exceeds the Required Area & Can Access Two Sides of Lander





# **Backup**



# Mission Concept closes, with margin











### **Iteration-4.0 Configuration is the Culmination of Extensive Trade Studies**





# Lander Accommodates Model Instrument Payload and Supporting Equipment







